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Abstract

In this article, free vibration studies on functionally graded, anisotropic and linear magneto-electro-elastic plates have

been carried out by semi-analytical finite element method. A series solution is assumed in the plane of the plate and finite

element procedure is adopted across the thickness of the plate such a way that the three-dimensional (3-D) character of the

solution is preserved. The finite element model is derived based on constitutive equation of magneto-electro-elastic material

accounting for coupling between elasticity, electric and magnetic effect. The present finite element is modeled with

displacement components, electric potential and magnetic potential as nodal degree of freedom. The functionally graded

material is assumed to be exponential in the thickness direction. The numerical results obtained by the present model are in

good agreement with the isotropic 3-D exact benchmark solutions available in literature. Numerical study includes the

influence of the different exponential factor, magneto-electro-elastic properties and effect of mechanical and electrical type

of loading on induced magneto-electro-elastic fields. Further study has been carried out on higher harmonic. Study has

been extended on functionally graded and layered magneto-electro-elastic plate.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Literature dealing with research on the behavior of magneto-electro-elastic structures has gained more
importance recently as these smart materials have the ability of converting energy from one form to the other
(among magnetic, electric and mechanical energy) [1,2]. Such materials can exhibit field coupling that is not
present in any of the monolithic constituent material. With application in ultrasonic imaging devices, sensors,
actuators, transducers and many other emerging components, there is a strong need for theories or techniques
that can predict the coupled response of these so-called smart materials, as well as structure composed of
them. Studies on static and dynamic behavior on plates as well as infinite cylinder has been dealt in literature.
Pan [3] derived an exact closed-form solution for the simply supported and multilayered plate made of
anisotropic piezoelectric and piezomagnatic materials under a static mechanical load. Pan and Heyliger [4]
solved the corresponding vibration problem. Piezoelectric and piezomagnetic composites exhibit coupling
effect of electric and magnetic fields. In most of the studies, these composite materials have been used as layers
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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or as multiphase. The behavior of finitely long cylindrical shells under uniform internal pressure has been
studied by Wang and Zhong [5] and they concluded that piezoelectric and piezomagnetic composites in
general have the coupling effect, which is two orders higher than that of single-phase magnetoelctric
constituent materials. Micro-mechanical analysis of fully coupled electro-magneto-thermo-elastic composites
has been carried out by Aboudi [6] for the prediction of the effective moduli of magneto-electro-elastic
composites. Li [7] studied the multi-inclusion and inhomogenity problems in a magneto-electro-elastic solid.
Wang et al. [8] derived the state vector approach to analysis of multilayered magneto-electro-elastic plates for
mechanical and electrical loading.

From the literature survey, it is found that only few studies have been reported on magneto-electro-elastic
structures by finite element analysis. Free vibration behavior of infinitely long magneto-electro-elastic
cylindrical shell has been studied by Buchanan [9] by using semi-analytical finite element method. Buchanan
[10] has studied the behavior of layered versus multiphase magneto-electro-elastic infinite long plate
composites by finite element method. Lage et al. [11] developed a layerwise partial mixed finite element
model for static analysis of magneto-electro-elastic plate. Most recently, authors [12,13] proposed
the 3-D finite element analysis for FGM cylindrical shells. In addition, authors [14] carried out static
analysis of FGM magneto-electro-elastic plate by finite element method under mechanical and electrical
loading.

The special feature of graded spatial compositions (non-homogeneous) associated with FGM provides
freedom in the design and manufacturing of novel structures. Still there are great challenges in the numerical
modeling and simulation of the FGM structure [15–18]. The studies on non-homogeneous magneto-electro-
elastic structure are less in literature. Chen and Lee [19] adopted state-space formulation to derive equations
for non-homogeneous transversely isotropic magneto-electro-elastic plates. Chen et al. [20] carried out free
vibration analysis of non-homogeneous transversely isotropic magneto-electro-elastic plates. Pan and Han [21]
presented an exact solution for functionally graded and layered magneto-electro-elastic plates by pseudo-
Stroh formalism.

It appears from literature survey that there is no finite element formulation available for vibration
studies on finite FGM and layered magneto-electro-elastic plate. Hence, in present study, free vibration
analysis of FGM and layered magneto-electro-elastic plates has been carried out by using series solution
in conjunction with finite element approach. The main aim of the study is to bring out effects of piezo-
electric, magnetostrictive and coupling terms on frequency behavior, categorically through proposed five
classes of vibration. In addition, this study has been dealt on higher harmonic too. Further study has been
extended on FGM layered with thickness to span ratio subjected to open and closed circuit electric boundary
condition.
2. Basic equations

The coupled constitutive equations for anisotropic and linearly magneto-electro-elastic solids can be
written as

sj ¼ CjkSk � ekjEk � qkjHk, (1)

Dj ¼ ejkSk þ ejkEk þmjkHk, (2)

Bj ¼ qjkSk þmjkEk þ mjkHk, (3)

where sj denotes stress, Dj is electric displacement and Bj is magnetic induction. Cjk, ejk and mjk are the elastic,
dielectric and magnetic permeability coefficients. ekj, qkj and mjk are piezoelectric, piezomagnetic and
magnetoelectric material coefficients. Apparently, various uncoupled cases can be reduced from Eqs. (1)–(3).
A completely coupled magneto-electro-elastic material matrix, assuming a hexagonal crystal class, for above
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constitutive equations is given below by Buchanan [10]:
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The strain displacement relations are

Sxx ¼ S1 ¼
qu

qx
; Syy ¼ S2 ¼

qv

qy
; Szz ¼ S3 ¼

qw

qz
,

Syz ¼ S4 ¼
qv

qz
þ

qw

qy
; Sxz ¼ S5 ¼

qu

qz
þ

qw

qx
; Sxy ¼ S6 ¼

qu

qy
þ

qv

qx
, (5)

where u, v and w are mechanical displacements in co-ordinate directions x, y and z.
The electric field vector Ei is related to the electric potential f as follows:

Ex ¼ E1 ¼ �
qf
qx
; Ey ¼ E2 ¼ �

qf
qy
; Ez ¼ E3 ¼ �

qf
qz

. (6)

The magnetic field Hi is related to magnetic potential C as follows:

Hx ¼ H1 ¼ �
qc
qx
; Hy ¼ H2 ¼ �

qc
qy
; Hz ¼ H3 ¼ �

qc
qz

. (7)
3. Finite element formulation

Recently, authors [14] have analyzed static studies on functionally graded and layered plate. In the present
work, finite series solution has been assumed satisfying boundary conditions for simply supported plates has
been adopted. The finite element model has been used in the thickness direction. For a general loading, the
shape functions are as follows:

uðx; y; zÞ ¼
XN

n¼1

XM
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UnmðzÞ cos
np
Lx

� �
x sin

mp
Ly

� �
y,
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� �
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� �
y,

wðx; y; zÞ ¼
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XM
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W nmðzÞ sin
np
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� �
x sin

mp
Ly

� �
y;
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jðx; y; zÞ ¼
XN

n¼1

XM
m¼1

FnmðzÞ sin
np
Lx

� �
x sin

mp
Ly

� �
y,

cðx; y; zÞ ¼
XN

n¼1

XM
m¼1

CnmðzÞ sin
np
Lx

� �
x sin

mp
Ly

� �
y, ð8Þ

where n and m being two positive integers and N and M are the number of terms in the series to be accounted
for the general loading. In the present study, analysis has been carried out similar to that reported by Pan and
Han [21] for m ¼ n ¼ 1. In the end, the analysis has been reduced for finite element in the thickness direction,
still retaining the 3-D dependence of the solution based on the choice of n and m. The analysis is carried out by
two-noded finite element and the assumed shape functions are

Ui ¼ ½Nu�fUg; F ¼ ½Nj�fFg; C ¼ ½Nj�fCg, (9)

where

N1 ¼ 1�
zi

ziþ1 � zi

� �
; N2 ¼

zi

ziþ1 � zi

� �
.

For a coupled filed problem, finite element equations are as follows:

½½Kuu� � o2½M��fUg þ ½Kuf�ffg þ ½Kuc�fcg ¼ 0,

½Kuf�
TfUg � ½Kff�ffg � ½Kfc�fcg ¼ 0,

½Kuc�
TfUg � ½Kfc�

Tffg � ½Kcc�fcg ¼ 0. (10)

Various stiffness matrices are defined as follows:
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Z
½Bf�
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where C ¼ 0:25LxLy and [Bu], [Bf], [Bc] represents the strain-displacement, electric field–electric potential and
magnetic field–magnetic potential relations, respectively. The component matrices for Eq. (11) are
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where there are three additional columns for N2. The matrix [Bf] is developed using Eq. (6) and is as follows:

½Bf� ¼ ½Lf�½Nf� ¼

q
qx

q
qy
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Similarly, using Eq. (7) gives
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q
qx

q
qy

q
qz

2
664

3
775 N1 N2

� �
¼

� np
Lx

� �
N1 � np

Lx

� �
N2

� mp
Ly

� �
N1 �

mp
Ly

� �
N2

qN1

qz
qN2

qz

2
66664

3
77775. (15)

In Eq. (10), by eliminating electric and magnetic potential terms by condensation techniques we get Keq

½Keq�fUg þ ½M�f €Ug ¼ 0, (16)

where

½Keq� ¼ ½Kuu� þ ½Kuf�½KII �
�1½KI � þ ½Kuc�½KV �

�1½KIV �.

The component matrices for Eq. (16) are

½KI � ¼ ½Kuf�
T � ½Kfc�½Kcc�

�1½Kuc�
T, (17)

½KII � ¼ ½Kff� � ½Kfc�½Kcc�
�1½Kfc�

T, (18)

½KIV � ¼ ½Kuc�
T � ½Kfc�

T½Kff�
�1½Kuf�

T, (19)

½KV � ¼ ½Kcc� � ½Kfc�
T½Kff�

�1½Kfc�. (20)

The eigenvectors that correspond to the distribution of ffg and fcg can be as follows:

f ¼ ½KII �
�1½KI �fUg, (21)

c ¼ ½KV �
�1½KIV �fUg. (22)
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To study the piezoelectric effect on frequency due to BaTiO3 material, the stiffness matrix ½Keq_ff� is derived
and is given by

½Keq_ff� ¼ ½Kuu� þ ½Kuf�½Kff�
�1½Kuf�

T. (23)

To study the magnetic effect on frequency due to magnetic CoFe2O4 material, ½Keq_cc� is used as stiffness
matrix and is as follows:

½Keq_cc� ¼ ½Kuu� þ ½Kuc�½Kcc�
�1½Kuc�

T. (24)

Material properties of homogeneous BaTiO3 and CoFe2O4 are given in Appendix. In the present study, the
Gaussian integration scheme has been implemented to evaluate integrals involved in different matrices, and
the functionally graded material properties accounted by evaluating the material properties at Gaussian
points. Different corresponding stiffness matrices have been used along with conventional mass matrix to
evaluate the frequencies of the system. Present study considers around 99 elements across the thickness
direction. Numerical investigation shows that the present method converges rapidly and very accuratly.

4. Analytical model of FGM material properties

4.1. Functionally graded (non-homogeneous) magneto-electro-elastic plate

First to start, study has been carried out for non-homogeneous transversely isotropic FGM magneto-
electro-elastic plate reported in literature [13,21]. The present study considers functionally graded material
composed of piezoelectric and magnetostrictive material. The grading is accounted across the thickness of the
FGM magneto-electro-elastic plate as shown in Fig. 1(a). An advantage of a plate made of an FGM over a
laminated plate is that material properties vary continuously in an FGM, while discontinuous across the
adjoining layers in a laminated plate. This has been achieved by grading the volume fraction of particular
material governed by power-law index. Fig. 1(b) depicts the through-the-thickness distribution of the volume
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Fig. 1. (a) Coordinate and configuration of functionally graded magneto-electro-elastic plate (Model-I). (b) Through the thickness

distribution of the volume fraction for different values of the power-law index n.
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fraction for different power-law indices n. Consider an FGM magneto-electro-elastic plate having horizontal
dimensions Lx and Ly ¼ 1m� 1m and thickness h ¼ :3. In the present analysis, it is assumed that the
composition is varied from the bottom surfaces to top surface, i.e., the top surface of the plate is piezoelectric-
rich, whereas the bottom surface is magnetostrictive-rich. In addition, material properties are graded
throughout the thickness direction according to volume fraction power-law distribution.

The present study considers smooth and continuous variation of the volume fraction of either piezoelectric
or magnetostrictive material governed by the power-law index.

A simple power-law-type definition for the volume fraction of the metal across the thickness direction of the
FGM plate is assumed as

VB ¼
2zþ h

2h

� �n

, (25)

where h is the thickness of the plate, z the thickness coordinates ð0pzphÞ, and n the power-law index. The
bottom surface of the plate ðz ¼ �h=2Þ is CoFe2O4-rich, whereas the top surface ðz ¼ h=2Þ of the plate is
BaTiO3-rich. The sum total volume of the constituent materials, BaTiO3 (B) and CoFe2O4 (F) should be

VB þ V C ¼ 1. (26)

On the basis of the volume fraction definition and law of mixtures, the effective material property definition
is as follows:

ðMPÞeff ¼ ðMPÞtopV B þ ðMPÞbottomVC . (27)

‘MP’ is general notation for material property. By making use of Eqs. (25)–(27), the following effective
elastic, piezoelectric, piezomagnetic, dielectric and magnetic permeability, and thermal properties definitions
can be written as

Ceff ¼ ðCB � CF Þ
2zþ h

2h

� �n

þ CF , (28a)

eeff ¼ ðeB � eF Þ
2zþ h

2h

� �n

þ eF , (28b)

qeff ¼ ðqB � qF Þ
2zþ h

2h

� �n

þ qF , (28c)

eeff ¼ ðeB � eF Þ
2zþ h

2h

� �n

þ eF , (28d)

meff ¼ ðmB � mF Þ
2zþ h

2h

� �n

þ mF . (28e)

In the above Eqs. (28a)–(28e), ‘eff’ stands for effective material properties obtained by the above equations
for particular power-law index n. Material coefficients of the piezoelectric BaTiO3 and magnetostrictive
CoFe2O4 is given in Appendix. In addition, variation of effective dielectric coefficients and effective magnetic
permeability with respect to power-law index n across the thickness direction is shown in Fig. 2(a) and (b). It is
seen that for power-law index n ¼ 1.0 the variation of effective material property is linear.

4.2. Functionally graded and layered magneto-electro-elastic plate (Model-II)

Further study has been carried out on functionally graded and layered FGM plate (Model-II) made up of
three layers considered as reported in literature [14–21]. The there layers have equal thickness of .1m and the
horizontal dimensions of the plate are Lx�Ly ¼ 1m� 1m. Two functionally graded and layered sandwich
plates with stacking sequences BaTiO3/COFe2O4/BaTiO3 (B=F=B) and CoFe2O4/BaTiO3/COFe2O4 (F=B=F )
are shown in Fig. 3(a). Both top and bottom layers are functionally graded with the symmetric exponential
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Fig. 2. (a) Variations of effective dielectric constants of magnetostrictive material along the thickness direction of functionally graded

plate (Model-I). (b) Variations of effective magnetic permeability constants of magnetostrictive material along the thickness direction of

functionally graded plate (Model-I).
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variation as shown in Fig. 3(b). Five different exponential factors, i.e., Z ¼ �10;�5; 0; 5; 10 ð1=mÞ, were
studied.

For the functionally graded material with exponential variation in the thickness direction (z-direction), the
material coefficients are given by

CikðzÞ ¼ C0
ikeZz; eikðzÞ ¼ e0ikeZz; qikðzÞ ¼ q0

ikeZz,

eikðzÞ ¼ e0ikeZz; mikðzÞ ¼ m0ikeZz; dikðzÞ ¼ d0
ikeZz, ð29Þ

where Z is the exponential factor governing the degree of the material gradient in the z-direction, and the
superscript 0 is attached to indicate the z-independent factors in the material coefficients; Z ¼ 0 corresponds to
the homogeneous material case.
5. Result and discussion

The present section devotes on frequency behavior of both FGM models under the influence of power-law
index, different thickness to span ratio and open and closed circuit boundary condition by using finite
element formulation. To check the accuracy of the proposed finite element, the code has been verified with
various benchmark solutions available in literature. First, a benchmark problem [4] is considered for validation
for isotropic magneto-electro-elastic plate. Secondly, validation is carried out with another benchmark
solution carried out [20] for non-homogeneous transversely isotropic magneto-electro-elastic plate.
A further study has been carried out on different exponential factors, and effect of magneto-electro-elastic
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Fig. 3. (a) Coordinate and configuration of functionally graded and layered magneto-electro-elastic plate under study (Model-II).

(b) Variation of FGM proportional coefficient (eZz) across the thickness of the FGM and layered plate (Model-II).

Table 1

Different class of vibration considered in present study

Class of vibration Corresponding matrix used Frequency

I ½Kuu� Related to elastic property of the structure only

II ½Keq� Accounting coupling among magneto-electro-elastic field

III ½Keq_reduced� Neglecting magneto-electric coupling

IV ½Kcc� Considering magnetostrictive field only

V ½Kff� Considering piezoelectric field only

R.K. Bhangale, N. Ganesan / Journal of Sound and Vibration 294 (2006) 1016–10381024
coupling has been explained with mode shapes. In addition, studies have been extended for higher harmonic
too. Densities of both materials are assumed to be same. As mentioned earlier, five different classes of vibration
are brought out and the corresponding terminology used in the subsequent result and discussion are given in
Table 1.

5.1. Validation

A square plate of h=Lx ¼ h=Ly ¼ 1 studied by Pan and Heyliger [4] is considered here for comparison.
Table 2 shows the frequency parameter o� ¼ oLx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cmax=rmax

p
for the I and II classes of vibration. Pan and

Heyliger [4] reports the lowest frequency of the I class of vibration which is evidenced by looking at the mode
shapes of mode 1 of the B only plate in their work. An excellent correlation has been observed for mode 1.
Please note that our finite element results are identical with Ref. [4] calculation of the B, F, and different
stacking sequences of B=F=B and F=B=F . However, discrepancy around 3% is observed for other higher
modes. Similar conclusion was also reported by Chen et al. [20]. Further results have been verified with Chen
et al. [20] for both the I as well as II class of the vibration. It is seen that the present finite element gives an
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Table 3

Normalized natural frequency for power-law index n ¼ .0 piezoelectric (B only) plate

Mode number Class of vibration

I II III IV V

1 1.9180 2.1091 2.1091 1.9180 2.1091

2 2.3003 2.3003 2.3003 2.3003 2.3003

3 2.6503 2.8014 2.8014 2.6503 2.8014

4 2.8014 2.8153 2.8153 2.8014 2.8153

5 3.7772 3.9397 3.9397 3.7772 3.9397

6 3.9397 3.9614 3.9614 3.9397 3.9614

7 4.2646 4.3888 4.3888 4.2646 4.3888

8 5.3214 5.3214 5.3214 5.3214 5.3214

9 5.3370 5.5071 5.5071 5.3370 5.5071

10 5.3787 5.5547 5.5547 5.3787 5.5547

11 6.8007 6.8007 6.8007 6.8007 6.8007

Table 2

Frequency parameter o� ¼ oLx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cmax=rmax

p
(open circuit) in sandwich piezoelectric and magnetostrictive plate studied by Pan and

Heylinger [4] and Chen et al. [20]

Order BaTiO3 (B) CoFe2O4 (F)

I II I II

1 2.30033 2.10913 1.97472 1.5403

2 2.80149 2.81531 2.33729 2.33729

3 3.93970 3.96147 3.18632 3.18663

4 5.32145 4.38882 424020 3.79138

5 6.80079 5.50712 538002 4.53427

Order B=F=B F=B=F

I II I II

1 1.82466 1.54741 1.89864 1.60583

2 2.15576 2.15576 2.31552 2.24953

3 3.07673 3.08466 3.11597 3.22766

4 4.11595 3.44441 4.17799 3.74352

5 5.25651 4.39337 5.30974 4.39879

R.K. Bhangale, N. Ganesan / Journal of Sound and Vibration 294 (2006) 1016–1038 1025
excellent correlation with analytical results given in Ref. [20]. In addition, code has been verified for results
available in literature for elastic and piezoelectric plate by setting eij or qij, or both equal to zero.

5.2. Numerical studies on FGM (I) plate for different power-law index

Frequency analysis of FGM plate has been carried out for m ¼ n ¼ 1, which represents the fundamental
vibration mode of the practical importance. In order to understand the influence of the piezoelectric and
piezomagnetic material, five different classes of vibration are studied for all the first 11 modes and reported in
Tables 3–7. Different corresponding stiffness matrices have been used along with conventional mass matrix to
evaluate the frequencies of the system. Tables 3–7 gives the normalized frequency obtained by including
elastic, piezoelectric effect, piezomagnetic effect and combination effect for all modes including bending as
well as inplane for different power-law index as n ¼ 0, .2, 1.0, 5.0 and 1000.0. Here, power-law index n ¼ .0
corresponding to an isotropic plate with properties corresponds to that of homogeneous BaTiO3
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Table 4

Normalized natural frequency for power-law index n ¼ :2 of FGM plate

Mode number Class of vibration

I II III IV V

1 1.9211 2.08945 2.08945 1.91978 2.09049

2 2.3216 2.32164 2.32164 2.32164 2.32164

3 2.6712 2.81708 2.81708 2.67089 2.81721

4 2.8177 2.81777 2.81777 2.81777 2.81777

5 3.8076 3.93875 3.93875 3.80708 3.93875

6 3.9387 3.96729 3.96729 3.93875 3.96994

7 4.3628 4.48349 4.48349 4.36155 4.48543

8 5.3070 5.30702 5.30702 5.30702 5.30702

9 5.3981 5.56001 5.56001 5.39618 5.56489

10 5.5095 5.61852 5.61852 5.50444 5.62060

11 6.7746 6.77464 6.77464 6.77464 6.77464

Table 5

Normalized natural frequency for power-law index n ¼ 1:0 of FGM plate

Mode number Class of vibration

I II III IV V

1 1.89464 1.98968 1.98968 1.89014 1.99376

2 2.33942 2.33942 2.33942 2.33942 2.33942

3 2.69344 2.77998 2.77998 2.69247 2.78071

4 2.81704 2.81704 2.81704 2.81704 2.81704

5 3.82367 3.89045 3.89045 3.82309 3.89045

6 3.89045 3.92602 3.92602 3.89045 3.92693

7 4.46267 4.55060 4.55060 4.46406 4.54812

8 5.21328 5.21328 5.21328 5.21328 5.21328

9 5.43196 5.52448 5.52448 5.43211 5.52404

10 5.77390 5.81611 5.81611 5.76817 5.82039

11 6.63754 6.63754 6.63754 6.63754 6.63754

Table 6

Normalized natural frequency for power-law index n ¼ 5.0 of FGM plate

Mode number Class of vibration

I II III IV V

1 1.73467 1.74004 1.74004 1.72695 1.74769

2 2.20267 2.20267 2.20267 2.20267 2.20267

3 2.53548 2.54305 2.54305 2.53399 2.54447

4 2.60829 2.60829 2.60829 2.60829 2.60829

5 3.57426 3.57426 3.57426 3.57426 3.57426

6 3.59226 3.61203 3.61203 3.59132 3.61297

7 4.20171 4.23395 4.23395 4.20536 4.22931

8 4.76377 4.76377 4.76377 4.76377 4.76377

9 5.05416 5.08377 5.08377 5.05309 5.08453

10 5.64154 5.64551 5.64551 5.64173 5.64507

11 6.04862 6.04862 6.04862 6.04862 6.04862
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Table 7

Normalized natural frequency for power-law index n ¼ 1000.0 (homogeneous magnetostrictive F only)

Mode number Class of vibration

I II III IV V

1b 1.5477 1.5403 1.5403 1.5403 1.5477

2i 1.9747 1.9747 1.9747 1.9747 1.9747

3b 2.2607 2.2594 2.2594 2.2594 2.2607

4i 2.3372 2.3372 2.3372 2.3372 2.3372

5i 3.1866 3.1866 3.1866 3.1866 3.1866

6b 3.2202 3.2194 3.2194 3.2194 3.2202

7b 3.7866 3.7913 3.7913 3.7913 3.7866

8i 4.2402 4.2402 4.2402 4.2402 4.2402

9b 4.5355 4.5342 4.5342 4.5342 4.5355

10b 5.0571 5.0613 5.0613 5.0613 5.0571

11i 5.3800 5.3800 5.3800 5.3800 5.3800

‘b’ ¼ bending; ‘i’ ¼ inplane.
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(piezoelectric) plate and n ¼ 1000.0 corresponds to isotropic plate made up of magnetostrictive material
(CoFe2O4). The power-law index value n other than two extreme values governs the distribution of properties
of piezo-magnetic mixture in FGM plate. Variation of the composition of piezoelectric and magnetostrictive is
linear for power-law index n ¼ 1:0.

It is interesting to note that among five of the natural frequencies, three symmetric and two asymmetric are
the same for all power-law index. In fact, these frequencies belong to I class of vibration, which accounts only
elastic properties of the system. It is seen that certain vibration modes in the II class of vibration are insensitive
to the magneto-electro-elastic coupling given in I class. There are certain uncoupled elastic modes existing
where one has to check the effect of coupling. In order to understand the effect of coupling on frequency
behavior, mode shape is plotted across the thickness of the plate described in the next section.

First let us consider the power-law index n ¼ 0 and 1000 as given in Tables 3 and 7. In case of BaTiO3

(piezoelectric), the frequency evaluator using the influence of both the piezo and the magnetic effect (class II) is
higher than that of the conventional structural frequency (class I). In contrast, in the case of CoFe2O4, it is
seen that magnetic effect reduces the frequency. This is due to the fact that piezoelectric effect has a tendency
to increase the stiffness of the plate by induced electric field, while magnetostrictive material has a tendency to
decrease the stiffness of the system by inducing the magnetic field. While in the case of truly sandwich plate
(even dominated by magnetostrictive material, e.g F=B=F ), the combined stiffening effect of piezoelectric and
magnetostrictive terms to increase the overall stiffness of the sandwich plate.

From Tables 3–7, it is found that as the value of power-law index increases, the natural frequency decreases
as it is approaching toward the homogeneous magnetostrictive material, which corresponds to n ¼ 1000.0. It
is seen from Tables 3 and 7 that III and II classes of eigenvalues are the same; this is due to the fact that n ¼ 0
represents the present plate is fully made up of BaTiO3 only and n ¼ 1000.0 corresponds CoFe2O4

(magnetostrictive) where magneto-electro coupling coefficients are zero. In contrast, for n ¼ :2, 1.0 and 5.0,
similar behavior is not observed for III and II classes of vibration in Tables 4–6. Further, it is seen that as
power-law index n increases, the influence of the magnetic effect is felt more when compared to piezo-
electric effect as the material approaches to homogeneous magnetostrictive. This is evidenced by looking at
Tables 3–7.

5.2.1. Mode shape variation across the thickness of the FGM magneto-electro-elastic plate for different power-

law index

A study has been initiated to look into the thickness mode shape behavior which helps in identifying the
appropriate mode where the coupling effect has been felt. Mode shapes corresponding to the appropriate
frequencies are plotted across the thickness of the plate for selected power-law index n ¼ 0, 1.0 and 10,000.
Please note that present study has been carried out on II class of vibration, which takes into account effect of
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Fig. 4. Symmetric mode shapes for FGM magneto-electro-elastic plate for different power-law index n ¼ .0, 1.0 and 1000.0.

R.K. Bhangale, N. Ganesan / Journal of Sound and Vibration 294 (2006) 1016–10381028



ARTICLE IN PRESS
R.K. Bhangale, N. Ganesan / Journal of Sound and Vibration 294 (2006) 1016–1038 1029
magneto-electro-elastic coupling. Fig. 4(a)–(f) shows the symmetric mode shape behavior for the first two
modes for different values of the power-law index. Here, frequency belongs to II class of vibration
corresponding to mode 1 and 2 as shown in Tables 3, 5 and 7. Let us consider the discussion on mode 1. From
Fig. 4(a), it is seen that for n ¼ 0 (pure BaTiO3), the transverse displacement which, indicates the bending
frequency mode is predominant as compared to inplane elastic displacement. And effect of piezoelectric has
been clearly felt by seeing the variation of magnitude of electric potential across the thickness. Similar
behavior has been observed for n ¼ 1000 (pure CoFe2O4 magnetostrictive), where electric potential is replaced
by magnetic potential as shown in Fig. 4(e). While in case of n ¼ 1.0 as shown in Fig. 4(c), where the variation
of the piezoelectric and magnetostrictive composition is linear, the variation of the electric as well as magnetic
potential across the thickness of the plate along with transverse displacement is shown.

Fig. 4(b), (d) and (e) shows another set of symmetric mode shape corresponding to the frequencies of mode
2. Here, inplane displacements are constant and predominant as compared to transverse displacement, electric
potential and magnetic potential. While in case of n ¼ 1.0 inplane displacements varies across the thickness
and predominant as compared to others. W, electric and magnetic potential vanishes for B only (n ¼ 0),
n ¼ 1.0 and F only (n ¼ 1000) cases, which indicates that mode 2 is purely elastic mode and that no effect has
been felt of piezoelectric and magnetostrictive coupling.

Fig. 5(a), (c) and (e) shows the antisymmetric mode shape for the corresponding frequencies belonging to
the II class of vibration of mode 3 where bending effect is predominant as compared to inplane effect. This
material shows clearly the effect of material properties in terms of electric and magnetic potential variation
across the thickness. In case of n ¼ 1.0, we can see the presence of electric and magnetic potential and their
variation in opposite sense. This important feature will not exist in conventional isotropic plate. This gives the
freedom in designing for a particular application.

Another set of antisymmetric mode shapes for the corresponding frequencies belonging to II class of
vibration of the mode 4 is shown in Fig. 5(b), (d) and (f) . Even though transverse displacement is zero, still
some amount of electric and magnetic potential exists along with dominant inplane elastic displacement across
the thickness of the FGM plate. It is concluded that even though the frequency mode is insensitive to the
coupling effect, still the corresponding mode shows the electric and magnetic potential.

5.2.2. Numerical studies on FGM (I) plate for higher harmonic modes

As pointed out, earlier study carried out by Pan and Heyliger [4] and Chen et al. [20] is limited to
m ¼ n ¼ 1:0. It is felt that even though fundamental mode may be of practical importance, it is possible that
there are systems in which higher mode system can be excited. Hence, in the present study, the results are
obtained for higher mode also.

Listed in Table 8 are some of the lower eigenvalues (or natural frequencies) for different higher modes for
power-law index n ¼ 1:0.

As observed in the fundamental harmonic mode, in case of higher harmonic, the frequency evaluator using
the influence of both the piezo and the magnetic effect (class II) is higher than that of the conventional
structural frequency (class I) and certain of the modes are purely elastic. It is noticed that the first uncoupled
elastic mode changes the position for higher harmonic.

Further study has been carried out on different combination of m and n, and only coupled modes are
identified and reported in Table 9. As expected similar to elastic system here also mode (1,2) ¼ (2,1), etc.
Similar behavior is also observed in higher combination of m and n.

5.2.3. Studies on FGM magneto-electro-elastic plate with different h/a for open and closed circuit condition

Study has been carried out on frequency variation for open and closed circuit condition for functionally
graded plate. Here, the results obtained by finite element analysis are validated with benchmark solution given
by Chen et al. [20]. It is seen that the present formulation has exact correlation with analytical solution
mentioned above. Fig. 6(a) shows the variation of the lowest dimensionless frequency with the different
power-law index n for I class of vibration. As expected that I class of the frequency depend on the elastic
property of the FGM plate, there would not be any effect on closed circuit boundary condition. Further, as we
increase the power-law index, composition of the FGM will vary from the pure BaTiO3 to homogeneous
CoFe2O4. Fig. 6(b) shows the two frequency curves belonging to II class of vibration for opened and closed
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Fig. 5. Antisymmetric mode shape for FGM magneto-electro-elastic plate for different power-law index n ¼ .0, 1.0 and 1000.0.
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Table 9

Higher harmonic studies for power-law index n ¼ 1:0 for frequencies belongs to II class of vibration o� ¼ oLx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cmax=rmax

p

(n, m) Order of frequencies

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

(1,1) 1.98968 2.77998 3.92602 4.55060 5.21328

(1,2) 3.32873 3.72145 5.00388 6.08391 6.89769

(1,3) 4.80865 4.99911 6.14341 7.28093 8.38885

(1,4) 6.30627 6.43473 7.45142 8.47900 9.59792

(2,1) 3.32873 3.72145 5.00388 6.08391 6.89769

(2,2) 4.27885 4.52199 5.71977 6.87067 7.92274

(2,3) 5.50447 5.65157 6.73160 7.82599 8.95753

(2,4) 6.84036 6.97251 7.95340 8.93271 10.0302

(3,1) 4.80865 4.99911 6.14341 7.28093 8.38885

(3,2) 5.50447 5.65157 6.73160 7.82599 8.95753

(3,3) 6.49013 6.61824 7.62204 8.63314 9.74555

(3,4) 7.64379 7.79391 8.73297 9.63951 10.6946

(4,1) 6.30627 6.43473 7.45142 8.47900 9.59792

(4,2) 6.84036 6.97251 7.95340 8.93271 10.0302

(4,3) 7.64379 7.79391 8.73297 9.63951 10.6946

(4,4) 8.64131 8.82298 9.72901 10.5510 11.5455

Table 8

Higher harmonic studies for power-law index n ¼ 1.0 for frequencies belongs to II class of vibration o� ¼ oLx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cmax=rmax

p

Mode (n, m)

(1,1) (2,1) (3,1) (4,1)

I II I II I II I II

1 1.8946 1.9896 3.1592 3.3287 4.5527 4.8086 5.9657 6.3062

2 2.3394 2.3394 3.5816 3.6838 4.7924 4.9991 6.1599 6.4347

3 2.6934 2.7799 3.6838 3.7214 5.1822 5.1822 6.7247 6.7247

4 2.8170 2.8170 4.0392 4.0392 5.5156 5.5156 7.0888 7.0888

5 3.8236 3.8904 4.8381 4.8381 5.9035 6.1015 7.1105 7.4514

6 3.8904 3.9260 4.8516 5.0038 6.1015 6.1434 7.5268 7.5268

7 4.4626 4.5506 5.9409 5.9531 7.0157 7.0157 8.1737 8.2788

8 5.2132 5.2132 5.9531 6.0839 7.0692 7.2809 8.2788 8.4790

9 5.4319 5.5244 6.8115 6.8976 8.1293 8.1293 9.2400 9.2400

10 5.7739 5.8161 7.2329 7.2329 8.1913 8.3888 9.3249 9.5979
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circuit boundary condition. It is noticed that difference between two frequencies for the two electric conditions
also varies with power-law index n. Effect is most significant for homogeneous BaTiO3 plate, while the
difference decreases with increasing towards homogeneous CoFe2O4 plate. This is similar to the conclusion
reported in Ref. [20].

Further study has been carried on the free vibration of the above FGM plate with Lx ¼ Ly ¼ 1:0 for
different values of h=Lx for selective power-law index n ¼ 0, 1.0 and 1000.0. Results are presented here for
open electric circuit condition for II class of vibration. Fig. 7 shows the variation of the non-dimensional
frequency for different thickness-to-span ratios for power-law index n. As h=Lxðh=aÞ ratio decreases, the
frequency reduces as the plate become thinner as expected. The difference between frequencies of power-law
index was felt in thick plates.



ARTICLE IN PRESS

0 10 12 14 16 18 20
0.95

1.00

1.05

1.10

no
n-

di
m

en
si

on
al

 f
re

qu
en

cy
 

Power law index n

First class (I)

Open circuit 

0.405

0.410

0.415

0.420

0.425

0.430

0.435

0.440

0.445

no
n-

di
m

en
si

on
al

 f
re

qu
en

cy

Power law index (n)

Second Class (II)

Opened

Closed

(a)

(b)

2 4 6 8

0 10 12 14 16 18 202 4 6 8

Fig. 6. Variation of the lowest non-dimensional frequency versus the power-law index n (a) I class and (b) II class.

R.K. Bhangale, N. Ganesan / Journal of Sound and Vibration 294 (2006) 1016–10381032
5.3. Studies on functionally graded layered plate (Model-II)

Study has been carried out on functionally graded layered plate having stacking sequences B=F=B and
F=B=F with a ¼ b for different values of exponential factor Z ¼ 1, �5, 0, +5 and +10. Exponential factor
Z ¼ 0 corresponds to the conventional homogeneous sandwich plate made up of B=F=B. Tables 10 and 11
gives the first two class of vibration for different exponential factors for FGM-layered plate having stacking
sequences B=F=B and F=B=F . Please note that the modes that are reported in the subsequent table are
actually identified as the coupled modes among the first 11 modes where the coupling effect has been felt. It is
seen from table that as exponential factor increases, the frequencies increases. Further, it is seen that the
F=B=F stacking sequence has more natural frequencies as compared to B=F=B. This is because elastic
constants of F (CoFe2O4) are higher as compared to B (BaTiO3) counterpart.
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Table 10

FGM sandwich layered plate (Model II) having stacking sequence B=F=B with different exponential factor for II class of vibration (open

circuit)

Mode number Exponential factor

Z ¼ �10 Z ¼ �5 Z ¼ 0 Z ¼ þ5 Z ¼ þ10

1 3.42579 3.69638 3.99075 4.30947 4.65434

2 3.97078 4.32389 4.70578 5.12021 5.56455

3 4.51718 5.01286 5.55968 5.96521 6.14188

4 5.45019 5.62996 5.79793 6.17285 6.86818

5 6.62044 7.27383 7.93486 8.55374 9.22177

6 6.77719 7.34506 7.95529 8.66595 9.39054

7 6.83669 7.80587 8.88309 10.08562 11.42305

8 8.89069 9.73966 10.61499 11.50556 12.40378

9 8.97736 10.11918 11.33044 12.58028 13.04328

10 10.92316 11.56499 12.12140 12.63030 13.94953

11 11.39735 12.45568 13.53852 14.64553 15.77345

Table 11

FGM sandwich layered plate (Model II) having stacking sequence F=B=F with different exponential factor for II class of vibration (open

circuit)

Mode number Exponential factor

Z ¼ �10 Z ¼ �5 Z ¼ 0 Z ¼ þ5 Z ¼ þ10

1 3.640610 3.874117 4.136890 4.434772 4.773940

2 4.150271 4.515321 4.902647 5.310984 5.732444

3 4.819158 5.368926 5.804609 5.958868 6.130892

4 5.505962 5.657273 5.974930 6.650351 7.406637

5 6.786809 7.393943 8.039491 8.735699 9.506848

6 6.826690 7.590555 8.325885 9.019294 9.667535

7 7.309885 8.435417 9.664533 10.966288 11.846675

8 9.041019 9.894806 10.780147 11.630464 12.319095

9 9.282835 10.412854 11.374247 11.688902 12.618292

10 10.745510 11.086944 11.710422 13.165133 14.712670

11 11.551625 12.613866 13.700462 14.814165 15.955190
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5.4. Studies on layered plate with different h/a with open and closed electric circuit conditions

Study has been carried out for FGM sandwich plate for frequency variation under the influence of open and
closed circuit condition. Fig. 8 shows the variation of the lowest dimensionless frequency with the different
values of exponential factor Z for II class of vibration for mode 1. Fig. 8(a) shows the two frequency curve
belonging to open and closed circuit boundary conditions. It is noticed that difference between two
frequencies for the two electric conditions increases when there is an increase in exponential factor Z. This is
because the exponential factor Z ¼ þ10 has more amount of BaTiO3 on top surface. In contrast, Fig. 8(b)
shows the negligible effect of closed circuit boundary condition on FGM sandwich plate F=B=F . This
behavior can be explained by looking, the properties of CoFe2O4 where piezoelectric coupling coefficients are
zero.

Study has been carried out on two stacking sequences namely B=F=B and F=B=F sandwich plate with a ¼ b

for different values of h=a. Tables 12 and 13 give the first two classes of vibration for different h=a for selective
exponential factor Z ¼ þ10. Once again note that the modes that are reported in the subsequent table are
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Fig. 8. Variation of the lowest non-dimensional frequency versus the exponential factor for open and closed circuit conditions: (a) B=F=B

sandwich plate and (b) F=B=F sandwich plate.
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Table 12

Natural frequency O ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=C44

p
belongs to II class of vibration of a square plate for different thickness to span ratio (h/a) for B=F=B

sandwich plate having exponential factor Z ¼ þ10 with open circuit and closed circuit

h=a Class Frequency order

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

.5 I 3.24651 5.01787 8.27823 12.40097 16.40447

II 2.20103 4.65092 6.99546 8.25791 10.43482

(2.17167) (4.64865) (6.98185) (8.23132) (10.27387)

.3 I 1.69534 3.80197 7.32924 11.17946 14.85336

II .93802 2.90250 4.67285 6.94900 8.94816

(.93040) (2.90243) (4.60888) (6.81623) (8.73884)

.2 I 1.05811 3.47439 6.95564 10.60514 14.11456

II .44064 1.85862 3.92045 6.85770 8.27079

(.43845) (1.85817) (3.82730) (6.65376) (8.08718)

.1 I .49806 3.28464 6.62181 10.04917 13.39841

II .11072 .88344 3.46280 6.78329 7.65276

(.11065) (.88314) (3.39145) (6.53858) (7.57697)

.05 I .24220 3.22840 6.46584 9.77578 13.04873

II .02702 .43039 3.34396 6.58444 7.42068

(.02702) (.43025) (3.25272) (6.44598) (7.40347)

.02 I .09535 3.20414 6.37506 9.61735 12.84158

II .00422 .16952 3.30552 6.40245 7.33483

(.00422) (.16946) (3.20789) (6.37208) (7.32971)

Table 13

Natural frequency O ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=C44

p
of a square plate for different thickness to span ratio (h/a) for F=B=F sandwich plate having

exponential factor Z ¼ þ10 with open circuit and closed circuit

H=a Class Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

.5 I 3.460057 5.298218 8.419655 12.528745 16.476629

II 2.320855 4.665851 7.610018 8.431468 10.022958

.3 I 1.805288 3.878484 7.422588 11.279991 14.907517

II 1.014523 3.041130 5.057818 6.876614 8.393655

.2 I 1.120203 3.491665 7.048815 10.698564 14.169584

II .484493 1.958711 4.169641 6.675129 7.768470

.1 I .523248 3.272736 6.719636 10.136980 13.459274

II .123356 .927858 3.615219 6.657661 7.322505

.05 I .253371 3.211526 6.566482 9.863213 13.114104

II .030208 .030208 3.466236 6.543709 7.121635

.02 I .099488 3.186796 6.477342 9.701247 12.910113

II .004724 .176949 3.415383 6.477342 7.060414
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coupled modes identified among the first 11 modes. Open and closed circuit condition is assumed at the top
and bottom surface of the plate. In bracket frequency value depicts the closed circuit condition widely used
terminology in the smart structure. Italic notations are used for the effect of coupling of magneto-electro-
elastic structures. While parenthesis frequencies indicate the effect of closed circuit boundary conditions.
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From Table 12, it is visible that frequencies for the closed circuit conditions are usually lower than the
corresponding open circuit condition. Since the I class of vibration depends upon the elastic property of the
system, the electric boundary condition on the plate surface does not affect the associated frequency. It is seen
from Table 12 that increase in h=a ratio causes the frequencies decrease as the plate become thinner, as
expected. Important observation from Tables 12 and 13 is that as the thickness of the plate decreases, the gap
between numerical values of I (inplane mode) and II (bending mode) class of vibration increases. Even then, it
is found that the influence of magneto-electro-elastic coupling is felt on bending frequencies (II class of
vibration). The F=B=F stacking sequence has more natural frequencies as compared to B=F=B. This is due to
the fact that elastic constants of F (CoFe2O4) are higher as compared to B (BaTiO3) counterpart. Effect of
closed circuit condition on F=B=F stacking sequence is felt less. This may be due to the fact that both top and
bottom surfaces have F-only plate where piezoelectric coupling term vanishes.

6. Conclusion

In this article, finite element procedure is adopted for the vibration of the 3-D, anisotropic, magneto-electro-
elastic plate. A series solution is assumed in the plane of the plate and finite element procedure is adopted
across the thickness direction. The present solution is a natural extension of the corresponding static solution
for FGM plates developed recently by authors [14]. The model is derived based on constitutive equation of
magneto-electro-elastic material. Coupling between elasticity, electric and magnetic effects are included in the
analysis. The FGM plate is graded in the thickness direction and a simple power-law index will govern the
magneto-electric constituents profile across the thickness. It is found that different exponential factors in
functionally graded (Model-I) and functionally graded and layered plate (Model-II) shows the different
vibration characteristics. The results of the present model are in good agreement with the exact benchmark
solution for magneto-electro-elastic plate given by Pan and Heyliger [4] and Chen et al. [20]. Following are the
conclusions arrived:
(1)
 As power-law index increases, the frequency decreases as the constituent of material reaches homogeneous
magnetostrictive material for FGMmodel ‘I’; while in case of FGMmodel ‘II’, the frequencies increases as
exponential factor increases.
(2)
 It is found that some of the vibration modes in purely elastic media are insensitive to the coupling of
magneto-electro-elastic. But at higher modes, they still can produce electric and magnetic potentials.
(3)
 In general, the piezoelectric effect has the tendency of stiffening the plate and hence, increases the
structural natural frequency. In contrast, pure magnetic effect has a negative influence on the system
frequency and reduces the structural natural frequency marginally.
(4)
 While FGM-layered magneto-electro-elastic plate for both stacking sequences (B=F=B and F=B=F )
increase the frequency of the structure. This is due to the fact that overall stiffness of the system increases
because of the internal forces generated by induced electric and magnetic field and dominance effect of
piezoelectric.
(5)
 For the piezoelectric/magnetostrictive coupling mode, all the mode shapes, especially elastic displacements
component and electric and magnetic potential strongly depends on material composition of the magneto-
electro-elastic plate governed by different power-law indices.
(6)
 Power-law index other than two extreme ends produces both electric as well magnetic potentials, which
otherwise is absent in single monolithic components.
(7)
 Effect of open and closed circuit electric boundary conditions is felt more for piezoelectric-dominated
grading region as compared to magnetostrictive where the piezoelectric coupling vanishes.
(8)
 As the thickness of the plate decreases, the gap between numerical values of I (inplane mode) and II
(bending mode) class of vibration increases. Even then, it is found that influence of magneto-electro-elastic
coupling is felt on bending frequencies (II class of vibration).
The advantage of functionally graded material model over the layered model is that there is no discontinuity
between the electric, magnetic potential between the layers. It is felt that the present numerical study is highly
useful for characterizing FGM magneto-electro-elastic system for use as sensors or actuators.
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Appendix

Material coefficients of the magneto-electro-elastic plate
CoFe2O4
 BaTiO3
C11
 286
 166

C12
 173
 77

C13
 170
 78

C33
 269.5
 162

C44
 45.3
 43
e15
 0
 11.6

e31
 0
 �4.4

e33
 0
 18.6
e31
 .08
 11.2

e33
 .093
 12.6
m11
 �5.9
 .05

m33
 1.57
 .1
q15
 560
 0

q31
 580
 0

q33
 700
 0
m11
 0
 0

m33
 0
 0
Cij in 109N/m2, eij in C/m2, eij in 10�9 C/Vm, qij in N/(Am), mij in 10�4N s2/C2, mij in 10�9N s/VC.
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